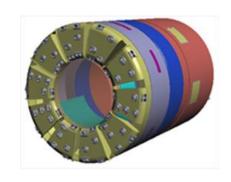
DTBM(ドーナツ型TBM)を 活用した新たな 山岳トンネルエ法

一般財団法人先端建設技術センター 研究第二部長 兼 研究第一部長 塚原 隆夫

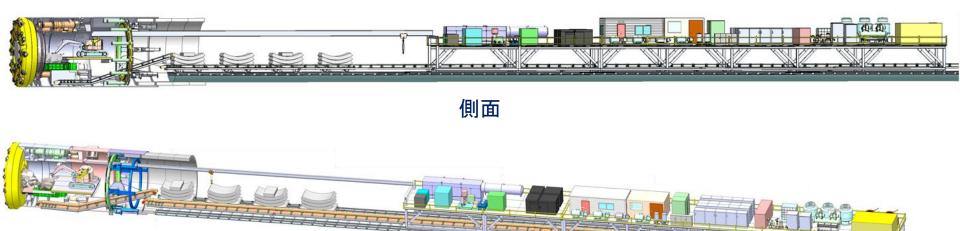
はじめに

DTBM工法の開発の背景

TBM国内施工実績集計(1964~2010年)					
TBM:径別	施工箇所数	適用			
2.0~4.9m	128				
5.0 ~ 6.9m	28	φ 7m以上 発電所導水路 3 箇所 高速道路 1 箇所(飛騨T)			
7.0m ~	4				
計	160				


TBM(全断面型)

- O TBM: 高速施工(生産性向上)が利点
 - ⇒ 我が国の地質が複雑に変化。 利点が生かせない。


- 〇 複雑な地質の変化に対応
 - 中心部に開口部(ドーナツ型)。

DTBM工法の開発の目標

- 〇 高速施工可能
- 〇 不良地山に遭遇しても掘進が 滞らない

ドーナツ型TBM

斜め後方

DTBMの研究開発体制

○ 学識者・建設会社(6社)・先端センターで 構成する「ドーナツTBM工法施工検討会」 で検討を実施

- ◇ 小山幸則元京都大学大学院教授
- ◇ (株)大林組・鹿島(株)・(株)熊谷組・清水建設(株)・大成建設(株)・株木建設(株)
- ◇ (一財)先端建設技術センター

〇 国土交通省建設技術研究開発助成

(平成27-28年度)

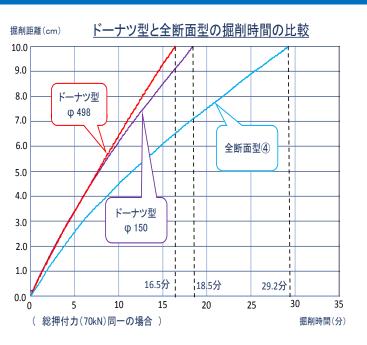
- ◇ 研究費の助成
- ◇ 学識者の指導・助言(今田徹東京都立大学名誉教授、足立紀尚京都大学名誉教授)

研究開発の内容

DTBMの機械的優位性(掘削実験)①

〇 ドーナツ型と全断面型(従来型)でどちらが

掘削能力として優位なのかを評価

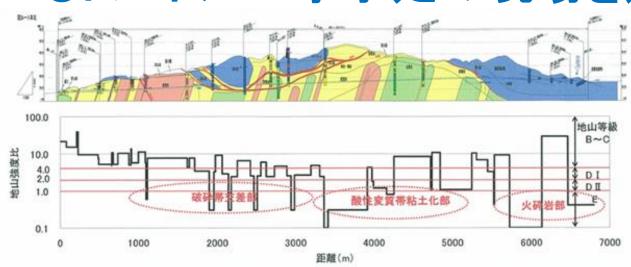

掘削実験実施状況

ドーナツ型 ディスクカッター

全断面型ディスクカッター

DTBMの機械的優位性(掘削実験)②

型式	総押付力(kN)	掘削時間(分)	ドーナツ型の 開口率	掘削時間効率(%)
ドーナツ型 φ 150	67.6	18.5	0.98(2%)	0.63(37%)
ドーナツ型 φ 498	66.2	16.4	0.75(25%)	0.56 (44%)
全断面型④	68.6	29.2	1.00	


⑤全断面型 カッタ14個

〇 同一掘削力なら、40%の掘削時間低減

(従来型TBMとの比較)

モデル現場での実施施工計画①(現場選定)

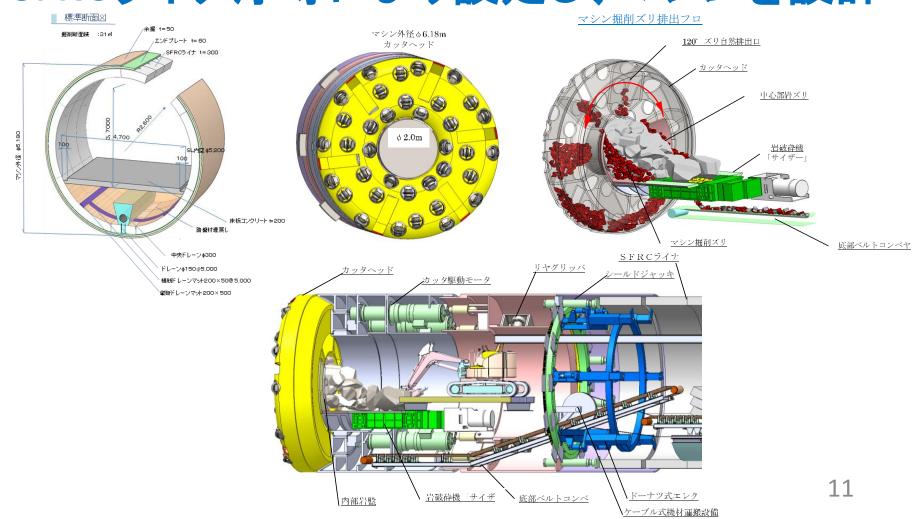
〇「実際の現場で施工する」ことを念頭に、トンネル延長約7km、低強度地山区間が存するトンネル工事予定の現場を選定

ì	【地山の力学特性(併強度	歐溫性他山)に関する理題】
1	【地田の刀子特性(四烛及、	膨短性地山	ルー関りる詠趣』

- ○破砕帯交差部では、地山強度比が極小、浸水崩壊しやすく膨張性粘土鉱物を含有
- ○酸性変質粘土化部でも同様な膨張性粘土鉱物を含む低強度地山
- ○火砕岩部のボーリングから土砂状のコアが採取(脆弱な地山)
- ⇒ 上図はボーリング調査からの推定のため、不確定要素を多分に含んでいる。

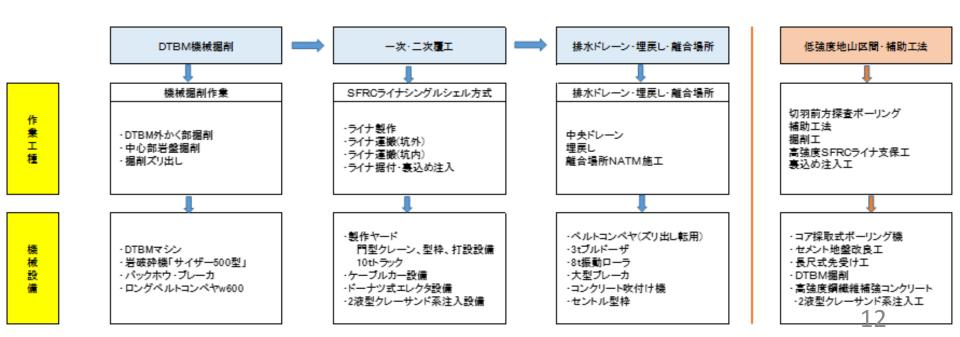
支保パターン		距離 (m)	
坑門工		7*2	14
	CII	1228	
標準	DΙ	2075	4 505
地山区間	DΠ	1259	4,595
	DⅢ	33	
低強度 地山区間	ΕI	1233	1 500
	EΠ	269	1,502
	CII	225	
非排水 構造区間	DΙ	535	900
	DΠ	60	860
	DΠ	40	
計			

モデル現場での実施施工計画②(支保工方式)

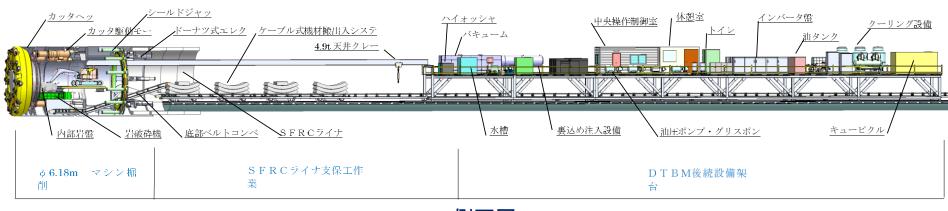

〇 支保工方式は、構造解析から、一次支保工と二次覆工を合わせた、鋼繊維補強コンクリート製のライナ(SFRCライナ)による施工が可能であることを確認。

SFRCライナ構造解析結果

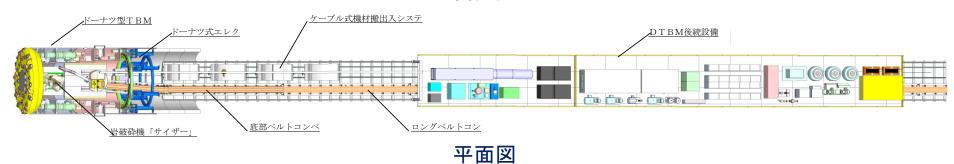
区間	緩み高さ (m)	単位体積重量 (kN/m³)	支保負担荷重 (kN/m²)	SFRCライナ コンクリート強度 (N/mm²)	SFRCライナ 厚さ (cm)
標準地山区間	9 m (1.5D)	22	200	36	30
低強度地山区間	90 m (15D)	22	2,000	60	30
非排水構造区間	9 m (1.5D)+100m水圧	12	1,100	45	30

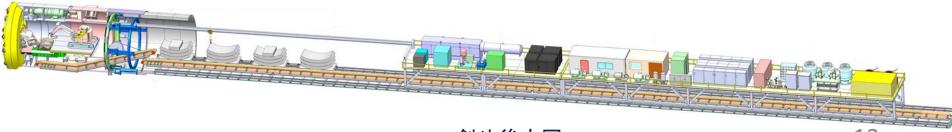

モデル現場での実施施工計画③(マシン設計)

○ マシンの外径を、要求される道路幅・高さ、 SFRCライナ厚等により設定し、マシンを設計

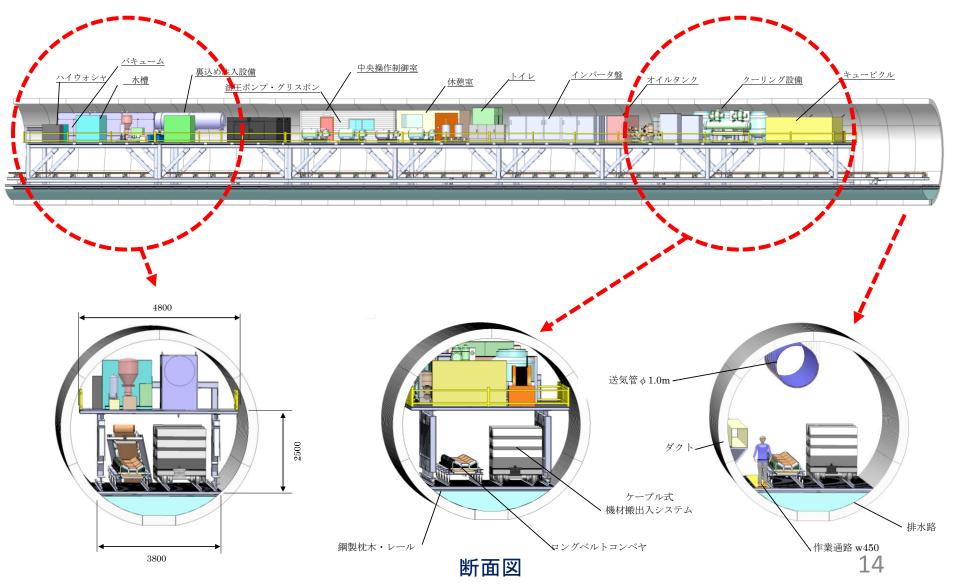

モデル現場での実施施工計画④(全体システム)

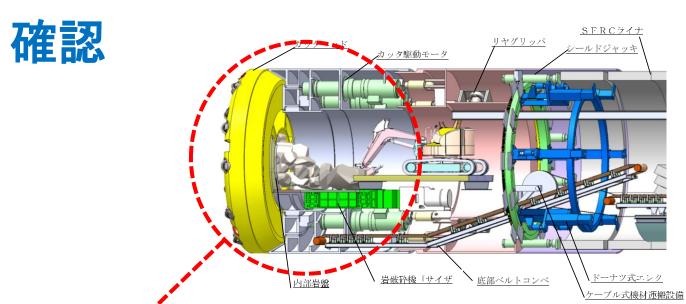
O DTBMの全体施工システムを構築し、システムの性能を確保できるよう機械設備を設計 (既に開発・活用されている機械設備は積極的に活用)



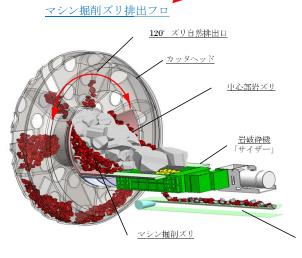

モデル現場での実施施工計画⑤(全体システム)

O DTBMの全体システム(1)


側面図


モデル現場での実施施工計画⑥(全体システム)

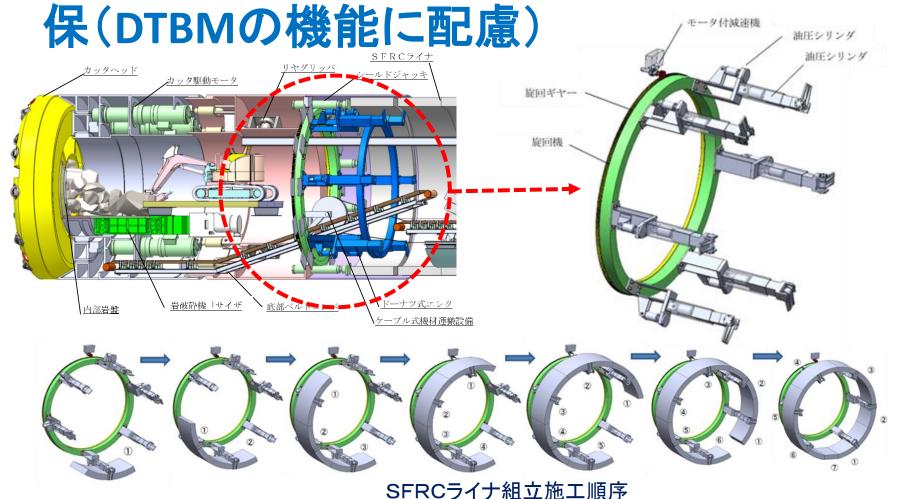
O DTBMの全体システム(2)



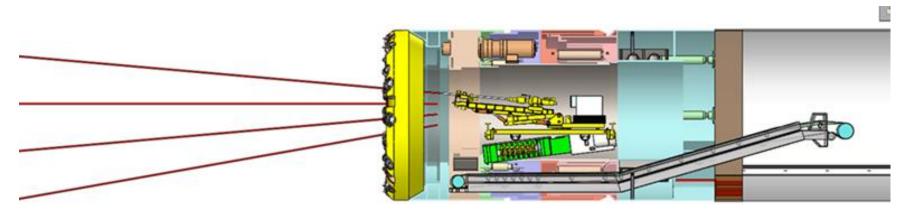
モデル現場での実施施工計画⑦(全体システム)

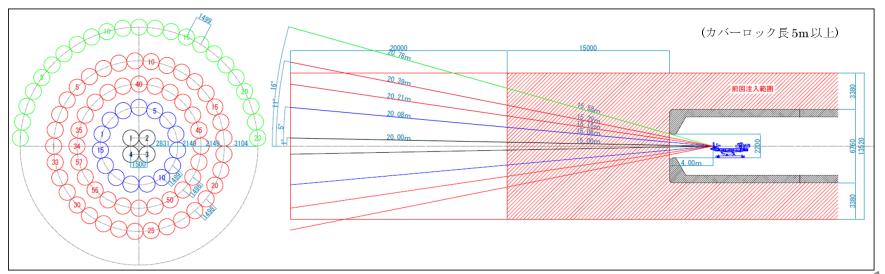
〇 マシン掘削ズリの排出・岩破砕機は機能を

底部ベルトコンベヤ

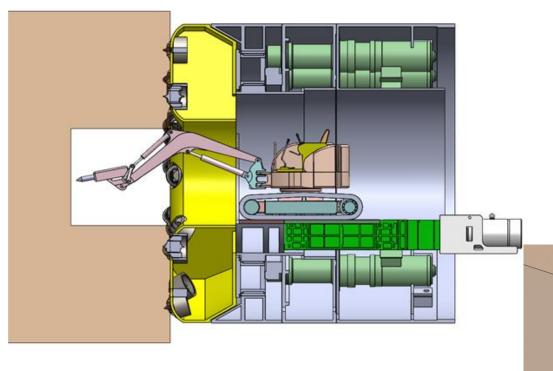

ズリ排出実験

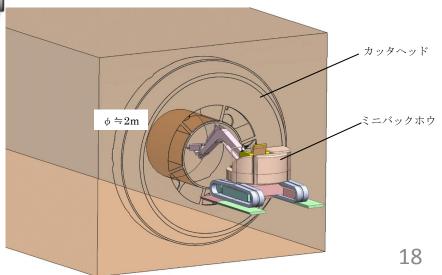
岩破砕機による破砕状況


モデル現場での実施施工計画®(全体システム)

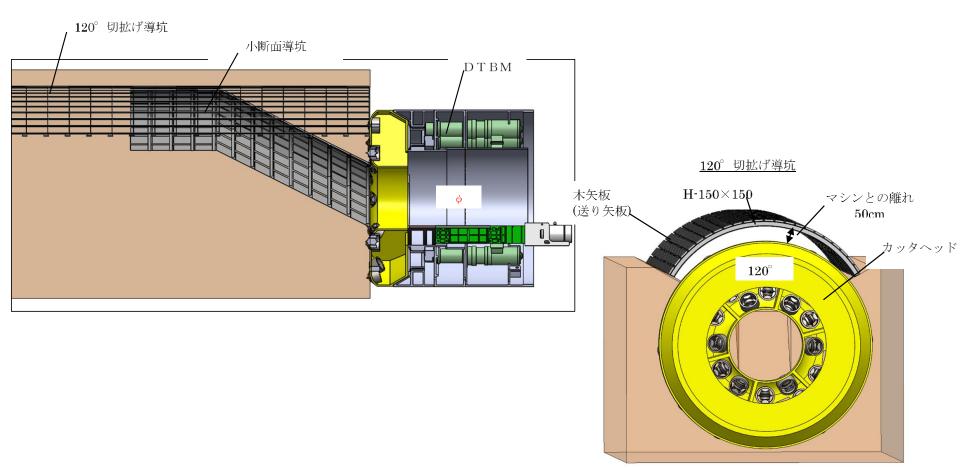

O SFRCライナ据付エレクタは、従来型から据付機構を外側に配置し、開口面積を大きく確

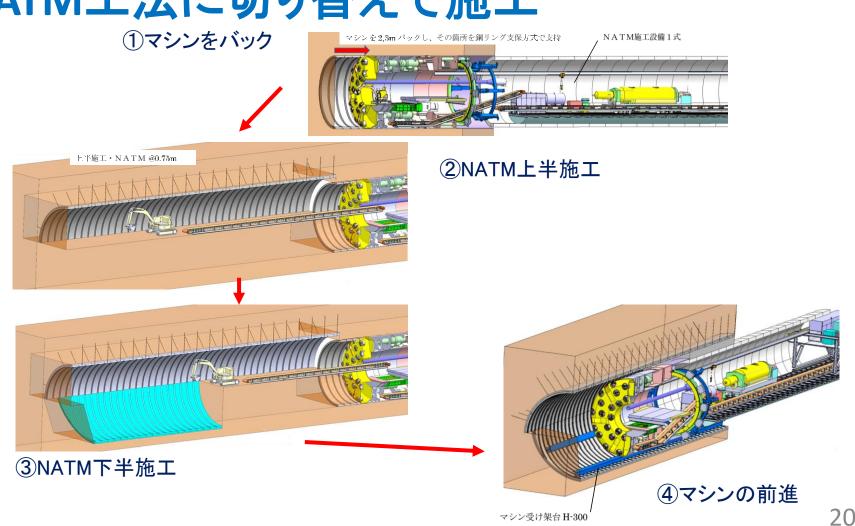
不良地山対策①(セメント系等地盤改良)


〇 トンネル上部の荷重支持、地山の強度改良により、掘進可能とする



不良地山対策②(素掘り中央導坑掘削)


○ マシン前方を先掘りし地山解放を促進させ、 マシンにかかる荷重を低減


不良地山対策③(上載荷重受け在来工法)

〇 トンネル上部荷重を在来工法で支持、マシン通過を補助

不良地山対策④(マシン前方NATM施工)

O SFRCライナで地山支持できない場合、 NATM工法に切り替えて施工

システムの妥当性確認

〇 全体システムを3Dプリンタで再現し、3次 元で取り合い、干渉等をチェック

DTBMの導入効果の例

生産性の向上①

〇 モデル現場の事例で、NATM工法に比べ、 工期が約5分の2に縮減

→ 例えば早期供用に寄与

オオヌマトンネル避難坑 NATMとDTBMの工期比較

区間 支保パターン		距離	NA	TM	DT:	BM
四則	区間 支保パターン (血)		月進(m)	月	月進	月
	СП	1,228	105.6	11.6	417	2.9
標準 地山	DI	2,075	88	23.6	366	5.7
区間	DΠ	1,259	66	19.1	344	3.7
	D Ⅲ	33	66	0.5	344	0.1
低強度	ΕΙ	1,233	53	23.3	264	4.7
地山区間	EΠ	269	44	6.1	66	4.1
	СП	225	88	2.6	417	0.5
非排水 構造	DΙ	535	66	8.1	366	1.5
区間	DΠ	60	53	1.1	344	0.2
	D Ⅲ	40		2.0		2.0
その他					マシン製作	12.0
	計	6,957	(片押し)	98.0	(片押し)	37.3

生産性の向上②

〇 モデル現場の事例で、NATM工法に比べ、 全作業員数が約5分の2に低減

→ 効率化が期待

DTBM工法 1方当たり編成人数

全般

DTBM 掘削

覆工

坑外 作業

合計

17111111111111111111111111111111111111				
世話役	1方当たり	職種		
トンネル世話役 機械世話役	2人	世話役		

DTBM運転管理	2人	トンネル特殊工
バックホウ遠隔運転	1人	トンネル特殊工
機械運転保守	2人	トンネル特殊工
坑内雑作業	2人	トンネル作業員

ライナ据付け ・エレクタ操作 ・ライナボルト締め ・ライナ搬入 ・裏込め注入	4人	トンネル作業員
機材搬出入作業	2人	

ズリ出し・裏込め運転	2人	トンネル作業員
機材搬出入作業	2人	トンイル作業貝
整備鍛冶工	1人	鍛冶工

1方当たり作業員数	20人

編成人員職種1方当たり

職種	NATM		DTBM			
柳竹里	掘削工	覆工	掘削・ワンパス			
トンネル世話役	1	1	2			
トンネル特殊工	7	6	5			
トンネル作業員	1	2	13			
計	8 (人)	9 (X)	20 (人)			

オオヌマトンネル避難坑延長7kmに対する掘削・支保工作業員数

ドーナツ型TBM	20人/方×2方×22日×23月=20,240人	掘削・ワンパス
NATM	13人/方×2方×22日×98月=56,056人	上半7人下半6人*0.2 覆工9人/2

おわりに

おわりに

〇 ドーナツ型TBMを活用した山岳トンネルエ 法の機械的な優位性を立証

〇 施工実施に必要な、ドーナツ型施工法全体の実施設計等の検討を実施

概ね実用化できるレベルに到達したものと思料

ご清聴ありがとうございました。