1)橋梁点検 UAV(自律飛行技術)、 損傷動検出に関する 2)点検結果の 3次元モデリング技術 に関する情報

Carnegie Mellon University

### Carnegie Mellon University:概要



**[ARIA Project]** (Aerial Robotic Infrastructure Analyst)

同大学のRobotics Institute および Civil and Environmental Engineering departmentsと、Northeastern Universityの連携による研究開発。橋梁を対象に、「①UAV点検技術」、「②3次元モデリング技術」、「③分析・データ管理技術」のトータルプロジェクト。

#### 氏名、役職、所属



**Burcu Akinci** 

Paul Christiano Professor of Civil & Environmental Engineering, Associate Dean for Research, College of Engineering Co-Director, Smart Infrastructure Institute



Sebastian Scherer ※欠席 Systems Scientist



**Silvio Maeta**Senior Research Programmer
Robotics Institute



Weikun Zhen
PhD Student
Robotics Institute

**Robotics Institute** 



Colleen McCabe Mantini
Program Manager
College of Engineering

### Carnegie Mellon University:研究の背景







## Carnegie Mellon University: ARIA Project



### ARIA Project Objectives

#### Robotic sensing system



The robot acts as an inspector's tool, accomplishing inspection tasks with various levels of autonomy.

## Rapid infrastructure modeling and analysis



Algorithms transform 3D and imagery from accurate low-level point cloud captured by the MAV, into a high-level semantic model, and finally a finite element model.

## Immersive inspection and assessment



A visualization environment provides an immersive virtual infrastructure representation to aid in inspection and assessment tasks.

橋梁点検UAV技術(+損傷自動検出技術)

### Carnegie Mellon University: UAV機体・センサ



### Robot (MAV)





#### Rotating 2D Laser Range Finder (LiDAR)

- Scan in a 2D fan from −135° to 135°
- Return ~1000 points/sec
- Collect 40 scans/sec
- Rotate 180°/sec

#### Inertial Measurement Unit (IMU)

- 3-axis linear acceleration
- 3-axis angular velocity
- Data streamed at 100Hz





### Carnegie Mellon University: 点検での利用



### Plane Segmentation, Coverage Planning and UI

- Plane Segmentation
- Extract major planes from acquired point cloud map
- Works well for relatively simple structures
- Need manual adjustment for a specific bridge to capture critical structures



Extracted planes from Charles Anderson Bridge

- Coverage Path
- Generated from waypoints set that guarantees safety and coverage



- ı UI
- Select and adjust plane
- Check path safety
- Auto take-off and landing
- Monitor task and robot status



### Carnegie Mellon University: UAV 点検デモ



### Interactive Detailed Inspection

# Autonomous MAV Inspection Test at Charles Anderson Bridge



Carnegie Mellon University

## Carnegie Mellon University: ARIA Project



### **ARIA Project Objectives**

## Robotic sensing system



The robot acts as an inspector's tool, accomplishing inspection tasks with various levels of autonomy.

## Rapid infrastructure modeling and analysis



Algorithms transform 3D and imagery from accurate low-level point cloud captured by the MAV, into a high-level semantic model, and finally a finite element model.

## Immersive inspection and assessment



A visualization environment provides an immersive virtual infrastructure representation to aid in inspection and assessment tasks.

### 3次元モデリング技術

### Carnegie Mellon University: Semantic Modeling



### Object Detection and Identification

### Heuristic Approach for Detecting Structural Members

- Direction Consistency
  - Girder along traffic direction
- Vertical Ordering
  - column < bearing < deck</p>
- Neighbor Likelihood
  - abutment is adjacent to ground and deck



### Carnegie Mellon University: 点群からのモデル化



### Results on Mill Run Bridge



Texture-mapped laser

Component classified laser point cloud



Finite Element Model

### Carnegie Mellon University: 3次元モデリングまとめ



### Summary and Future Work

- 1. Advantages:
- Can detect more details and planes with very sparse point densities;
- More robust than RANSAC and Region Growing based method (local optimization).
- 2. Disadvantages:
- Sensitive to penalty factor and time-consuming.
- 3. Future work:
- Calculate the penalty factor automatically
- Extend the algorithm to multiple types of models cases.

### Carnegie Mellon University:質疑



### 質疑応答の要点

### 【点検全般】

- ① 点検個所へのチョーキングは行っているか?
  - 米国ではチョーキングしていない。
- ② ひび割れ検出の精度・要件は?
  - ▶ 0.1mmは困難。米国でそのレベルは求められない。

#### 【UAV技術】

- ① UAVで対象物にどこまで接近可能か?
  - ➤ SLAMに制限はなく機体の性能に依存。 現状、市販機体を使用しているため、2m程度。
- ② SLAM点群から自動で面(Plane)抽出が可能か?
  - ▶ 可能

### 【3次元モデリング技術】

- ① 3次元モデリングでは、個々の点群に部材属性を付与するのか?
  - ▶ その通り

### Carnegie Mellon University:考察·所感



- 土木分野とロボット分野の研究者が協力し、メンテナンスサイクル全体を見渡して、各段階で必要なロボット技術の研究開発を網羅的に実施。
- UAV点検技術は現場運用、3次元モデリングは維持管理での活用を見据え、実用アプリケーション開発として取り組まれている。
- 一方、日本の性能要求や幅広い構造種別への対応は課題。 技術の適用可能性について国内技術も組合せて改良・検証の 検討が必要。
- そのためには、日本の検査に即した検証データの整備が求められる。